Kullback-Leibler divergence measure of intermittency: Application to turbulence

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Texture Similarity Measure Using Kullback-Leibler Divergence between Gamma Distributions

We propose a texture similarity measure based on the Kullback-Leibler divergence between gamma distributions (KLGamma). We conjecture that the spatially smoothed Gabor filter magnitude responses of some classes of visually homogeneous stochastic textures are gamma distributed. Classification experiments with disjoint test and training images, show that the KLGamma measure performs better than o...

متن کامل

Kullback-Leibler Divergence Measure for Multivariate Skew-Normal Distributions

The aim of this work is to provide the tools to compute the well-known Kullback–Leibler divergence measure for the flexible family of multivariate skew-normal distributions. In particular, we use the Jeffreys divergence measure to compare the multivariate normal distribution with the skew-multivariate normal distribution, showing that this is equivalent to comparing univariate versions of these...

متن کامل

Rényi Divergence and Kullback-Leibler Divergence

Rényi divergence is related to Rényi entropy much like Kullback-Leibler divergence is related to Shannon’s entropy, and comes up in many settings. It was introduced by Rényi as a measure of information that satisfies almost the same axioms as Kullback-Leibler divergence, and depends on a parameter that is called its order. In particular, the Rényi divergence of order 1 equals the Kullback-Leibl...

متن کامل

Use of Kullback–Leibler divergence for forgetting

Non-symmetric Kullback–Leibler divergence (KLD) measures proximity of probability density functions (pdfs). Bernardo (Ann. Stat. 1979; 7(3):686–690) had shown its unique role in approximation of pdfs. The order of the KLD arguments is also implied by his methodological result. Functional approximation of estimation and stabilized forgetting, serving for tracking of slowly varying parameters, us...

متن کامل

Vector Quantization by Minimizing Kullback-Leibler Divergence

This paper proposes a new method for vector quantization by minimizing the Kullback-Leibler Divergence between the class label distributions over the quantization inputs, which are original vectors, and the output, which is the quantization subsets of the vector set. In this way, the vector quantization output can keep as much information of the class label as possible. An objective function is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2018

ISSN: 2470-0045,2470-0053

DOI: 10.1103/physreve.97.013107